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Abstract: This contribution focuses on the cost-effective management of the combined use of 
two procurement options: the short-term option is given by a spot-market with random price, 
whereas the long-term alternative is characterized by a multi period capacity reservation contract 
with fixed purchase price, reservation level and capacity reservation cost. Considering a multi-
period problem with stochastic demand, the structure of the optimal combined purchasing policy 
is derived using stochastic dynamic programming.  

Key words: Capacity reservation, spot market, purchasing policy, supply contracts, stochastic 
inventory control 

 

1. Introduction 

This contribution focuses on the cost-effective management of the combined use of a long-term 
and a short-term procurement option. In our case, the short-term option is given by a spot-market 
with a random spot-market price (which is independent of the quantity procured), whereas the 
long-term alternative is characterized by a simple wholesale price contract with a capacity 
reservation level and a downward flexibility to order at most the reservation level in each period. 
The planning situation we consider gains further complexity in the fact that in addition to the 
stochastic spot-market procurement option, the demand for the procured goods is also random. 
The management task is to fix a long-term capacity reservation level and to decide period-by-
period how to combine the two supply options in order to profit from the cost savings of long-
term procurement while still remaining flexible. Concerning the price variations on the spot 
market, this flexibility can be used to benefit from low short-term price levels while the long-
term contract is a means to hedge the risk of high spot market prices.  
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This paper is related to a variety of research streams in the operations management literature. A 
topic of recent interest is the study of the supply chain procurement strategies combining spot 
market purchases with purchases made in advance from a specific long-term supplier.  Henig et 
al. (1997) derived a three-parameter optimal policy without the consideration of uncertainty on 
the procurement side, which is a critical factor in practice. Bonser and Wu (2001) study the fuel 
procurement problem for electric utilities in which the buyer can use a mix of long-term and spot 
purchases. Our problem was first defined and studied in the inventory literature in Serel et al. 
(2001). They considered the simple (R,S) capacity reservation – order up policy, but they 
disregarded the spot market price uncertainty. Wu, Kleindorfer, and Zhang (2002) consider 
uncertainty in spot market prices and analyze the contracts for non-storable goods involving 
options executable at a predetermined price. Using a similar single-period model, Spinler and 
Huchzermeier (2006) show that, mainly due to the decrease in the supplier’s production costs 
when an options contract is used, the combination of an options contract and a spot market is 
Pareto improving with respect to the other alternative market structures. Seifert et al. (2004) also 
analyzed a single-period problem from the buyer’s standpoint with changing levels of buyer’s 
risk preferences. Kleindorfer and Wu (2003) linked this literature to evolving B2B exchanges on 
the Internet. Serel (2007) considered spot market uncertainty with respect to available quantity 
but didn’t consider price uncertainties. In Sethi et al. (2004) a situation with both demand and 
price uncertainty is taken into consideration, and a quantity flexibility contract is employed; 
however, no capacity reservation takes place.  
 
Various types of supply contracts involving advance capacity purchases have been investigated, 
generally based on a single-period framework. Erkoc and Wu (2005) model the negotiations 
between a manufacturer and a supplier when the supplier has to make a costly investment in 
additional production capacity. Jin and Wu (2001) analyze capacity reservation contracts 
between a single supplier and multiple buyers with reservation fees deductible from the purchase 
price paid in delivery. Deng and Yano (2002) study the contracts between a component supplier 
and a manufacturer involving a fixed wholesale price for advance purchases and a spot price 
determined and charged for purchases after the demand is realized. Burnetas and Ritchken 
(2005) look into the impact of option contracts on the wholesale and retail prices under price-
dependent demand in a manufacturer–retailer chain. Other papers on the use of options in supply 
chains include Kamrad and Siddike (2004). 
 
In our paper, we consider both demand and spot market price uncertainty in a multi-period 
framework. Our focus is on investigating the structure of the optimal purchasing and capacity 
reservation policy. To this end we use a stochastic dynamic programming approach for 
analyzing and solving the problem. It turns out that the optimal structure is given by a quite 
complex three-parameter decision policy with a price-dependent order-up-to level for short-term 
procurement.  
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The present analysis is related to those contributions where optimal policies are derived in the 
context of combined sourcing and capacity reservation. In Henig et al. (1997) and Serel et al. 
(2001) a simple three-parameter policy is shown to be optimal when no supply-side uncertainty 
exists. Sethi et al. (2004) consider additional price uncertainty for the short-term procurement 
option, but instead of a capacity reservation scheme they deal with a quantity flexibility contract. 
Their procurement policy is a price-contingent order-up-to policy (like ours). However, it is only 
proved for the single-period case and a simple geometric distribution of the random spot market 
price. The analysis in Serel (2007) is the closest to ours. The main difference is that they 
consider a spot market with random capacity at a given price instead of a random price without 
capacity restriction. Furthermore, they assume that the spot capacity is not known when the 
ordering decision is made so that procurement decisions will not depend on the respective 
capacity level at the spot market. Under these circumstances, the optimal policy in Serel (2007) 
has a simple three-parameter structure, but is not capacity-contingent. 

 

2. The Structure of the Optimal Policy 

2.1 Problem Description and Notation 

We assume that for the random stationary demand, ξ, per period and random spot market price, 
π, per period we know the following characteristics: 

 F(x), f(x), µx, σx cdf., pdf ., expected value and standard deviation of demand and 

 G(p), g(p), µp, σp   the  same distribution characteristics for the spot market price. 

Both demand and price are assumed to be identically and independently distributed. 

We consider a sequential decision process involving different level of knowledge in time. The 
first decision before any inventory is observed and ordering takes place is on 

 R the capacity reservation quantity  

that must be fixed for a longer time horizon based on the random demand and spot market price 
distribution and the following stationary cost factors: 

 c  the unit price charged by the long-term supplier, 

 r0  the capacity reservation price per period for a unit of capacity reserved, 

 h the inventory holding cost per unit and period, 

 v the shortage cost per unit and period. 
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 Next, the decision at the beginning of each time period is 

QL order quantity from the long-term supplier, and 

QK  order quantity from the spot market  

knowing  

 It  inventory level and pt the realized spot market price 

at the beginning of each period, t, of a given (finite) planning horizon T  (t=1,…T), but without 
knowing the realized demand for the period. The shipments are assumed to arrive before the 
period demand is realized. Unsatisfied demand is backordered. The final cost and finishing 
inventory level is only known after the realization of the demand at the end of the period. 

Future cost is discounted by 

               β           the single-period discount factor. 

The overall objective is to choose the long-term capacity reservation level before the first period 
starts and after that in each period of the planning horizon select the spot market and reservation 
based order quantities in such a way that the total expected cost is minimized.  

 

2.2 Optimal Capacity Reservation and Procurement Policy  

For the problem under consideration, the structure of the optimal policy can be evaluated by 
using a stochastic dynamic programming approach. The result is given in Proposition 1.  

Proposition 1: For a finite planning horizon, T, the optimal policy structure for the above 
combined ordering decision process, is an (R,SL,SK(p)) policy, characterized by the constant 
capacity reservation quantity, R, and constant base stock level SL for long-term supplier and a 
price-dependent base stock SK(p) for spot market. The order policy in each period t: 

(a) If pt < c,  order only from spot market up to base stock level SK(p).   

(b1) If pt  ≥  c, order from long term supplier only up to base stock level SL if the reserved 
capacity, R, is sufficient. 

(b2) If pt  ≥  c and the reserved capacity is not sufficient order from spot market up to level SK(p) 
as long as this level is not yet exceeded. 
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More formally, this policy can be described in the following way    

(a)  If  tp c< : 

0LQ =    and   
( )     if    ( )
0               if    ( )

K t t t K t
K

t K t

S p I I S p
Q

I S p
− ≤⎧

= ⎨ ≥⎩
 

(b) If   tp c≥ : 

    if     and  
        if     and  

0         if    

L t t L L t

L t L L t

t L

S I I S S I R
Q R I S S I R

I S

− ≤ − ≤⎧
⎪= ≤ − ≥⎨
⎪ ≥⎩

   and   ( )     if   ( )
0                  if    ( )

K t t t K t
K

t K t

S p R I I S p RQ
I S p R

⎧⎪ − − ≤ −= ⎨
≥ −⎪⎩

 

 
For a finite horizon problem the order-up-to levels SL and SK(p) vary from period to period. For 
this order-up-to policy, the total expected cost is a convex function of the capacity reservation 
level R.  

Proof:  

We introduce the following additional notation: 

Dt(It,R,pt) : minimum expected cost from period t to T for a starting inventory It and a given  

                   capacity reservation R, after realization of spot market price pt 

Ct(It,R)     : minimum expected cost from period t to T for a starting inventory It and a given  

                   capacity reservation R, before spot market price pt realizes 

C0(R)        : minimum expected cost from period 1 to T for a given capacity reservation level R  

before any spot market price realizes and starting inventory I1 is known.  

The state transformation for the backorder situation is     It+1 = It+QL,t+QK,t-xt    for t=1,2,…,T   
and with I1 as given initial inventory. 

For sake of simplicity the time index is suppressed for all variables in the following expressions. 

The minimum cost depending on the choice of the capacity reservation quantity R is given by 
taking the expected value over all possible initial inventory levels 

[ ]0 1( ) ( , )
I

C R E C I R=  

where we assume that this initial inventory is not yet known when the capacity reservation 
decision is made. 
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For the procurement decisions in period t=1,…,T , the dynamic programming recursive relations 
can be expressed by 
 

0

( , ) ( , , ) ( )t tC I R D I R p g p dp
∞

= ∫   and   

10, 0
0

( , , ) min ( ) ( , ) ( )
L K

t L K L K t L KR Q Q
D I R p cQ pQ L I Q Q C I Q Q x R f x dxβ

∞

+≥ ≥ ≥

⎧ ⎫⎪ ⎪= + + + + + ⋅ + + −⎨ ⎬
⎪ ⎪⎩ ⎭

∫     

with   1( , ) 0TC I R+ ≡    as final condition for all I and R. 

 
The major steps of the proof include 
 
- proving the optimality of (R,SL,S(p)) policy by complete induction  
- proving that this policy holds for any t if Ct+1(I,R) is convex 
- proving that Dt(I,R,p) is convex if this policy is applied 
- proving that this holds for the final period t=T 
- proving that 0( )C R is a convex function. 
 

The optimization problem in period t can be reformulated as 

{ }
0, 0

( , , ) min ( , )
L K

t L K t L KR Q Q
D I R p cQ pQ H I Q Q R

≥ ≥ ≥
= + + + +  

with  1
0

( , ) ( ) ( , ) ( )t L K L K t L KH I Q Q R L I Q Q C I Q Q x R f x dxβ
∞

++ + ≡ + + + ⋅ + + −∫  

and  
0

( ) ( ) ( ) ( ) ( )
I

I

L I h I x f x dx v x I f x dx
∞

= ⋅ − + ⋅ −∫ ∫  . 

By assumption 1( , )tC I R+  is convex in I and R, thus ( , )tH I R  is also convex in I and R due to 
well-known convexity of L(I). So we can analyze the properties of minimum cost 
functions ( , , )  und  ( , )t tD I R p C I R  

(i)  in case of  p c≤ : 

( ( ) ) ( ( ), )    if    ( )
( , , )

       ( , )                          if    ( )
K t K K

t
t K

p S p I H S p R I S p
D I R p

H I R I S p
⋅ − + ≤⎧

= ⎨ ≥⎩
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(ii) in case of  p c≥ : 

 

( ( ) ) ( ( ), )         if                        ( )
( , )                                            if   ( )

( , , )
( ) ( , )                        

K t K K

t K L
t

L t L

c R p S p I R H S p R I S p R
c R H I R R S p R I S R

D I R p
c S I H S R
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⋅ + + − ≤ ≤ −
=
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L L

t L
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we can easily show that ( , , )tD I R p  is twice continuously differentiable in I and R. Due to 
convexity of ( , )tH I R we have: 
 

2 2 2 2 2 2

2 2 2 2( , ) 0 , ( , ) 0 and  ( , ) ( , ) ( , ) ( , ) 0 t t t t t tH I R H I R H I R H I R H I R H I R
I R R II R I R

∂ ∂ ∂ ∂ ∂ ∂
≥ ≥ ⋅ − ⋅ ≥

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
 
 
So the Hessian of ( , , )tD I R p  is nonnegative definite for each p, ( , , )tD I R p  is convex in I and R 

for each p, and  
0

( , ) ( , , ) ( )t tC I R D I R p g p dp
∞

= ∫  is convex in I and R due to ( ) 0g p ≥  

 
Steps of induction: 
 
For each t<T the following holds:  From convexity of 1( , )tC I R+  it follows that also ( , )tC I R  is 
convex in I and R, so 1( , )tH I R−  is also convex in I and R and consequently (R,SL,SK(p)) policy 
is optimal also for t-1. 

 
For t=T (start of induction) we have:  ( , ) ( )TH I R L I=  independent of R   thus ( , )TH I R  is 
convex in I and  (R,SL,SK(p)) policy is optimal for t=T. 
 
 
General Conclusions 
Policy Structure: (R,SL,SK(p)) policy is optimal for each 1 t T≤ ≤   

 Policy parameter ,
( , )

is calculated from:   0  for each t
L t

H S R
S c R

S
δ

δ
+ =  

 Policy parameter  ,
( , )

( ) is calculated from:   0  for each t
K t

H S R
S p p R

S
δ

δ
+ = and p 

 Policy parameter R is calculated from: 0 ( )  0  C R
R

δ
δ

=  

 
 Functions 0( ) and ( , )tC R H I R  are convex. 
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From unconstrained optimisation we get as optimal inventory levels  

- after QL-optimization :   ,
( , )

( ) from:   0t
L t

H S R
S R c

S
δ

δ
+ =  

- after QK-optimization :  ,
( , )

( , ) from:   0t
K t t t

H S R
S p R p

S
δ

δ
+ = . 

-  

Due to  ( , ) ( , )t L K t L K
L K

H I Q Q R H I Q Q R
Q Q
δ δ

δ δ
+ + = + +  ,  

and due to restrictions   0   and  0L KQ R Q≤ ≤ ≤ we get the policy structure described in 
Proposition 1. 

Order-up-to levels ,L tS and , ( )K t tS p  

    From convexity of ( , )tH S R it immediately follows that   

    
,

, ,

,

  if  
( )   if  

  if  

L t t

K t t L t t

L t t

S p c
S p S p c

S p c

⎧> <
⎪
= =⎨
⎪< >⎩

 

The convexity properties described can also be exploited for simplifying the numerical 
computation of the optimal policy parameters. 

 

3. Extensions 

The analysis given in Section 2 will be extended in three directions: 

• considering the initial inventory information in the capacity reservation decision,  

• a lost-sales environment for unsatisfied demand, and  

• the case of an infinite planning horizon. 

In Section 2, we modeled a situation where the negotiation about the contract with the long-term 
supplier takes place before the starting inventory of the first period is known. If the decision on 
the capacity reservation level can be postponed until this inventory is known the following 
proposition holds. 
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Proposition 2:  Knowing the initial inventory at the time of the capacity reservation, the optimal 
ordering policy is identical to that in Proposition 1 , while the optimal capacity reservation 
quantity will become a function of the initial inventory I1. 

Proof:  

The only difference to the optimization problem formulated in Section 2 is that for the total cost 
impact of the capacity reservation level we now have 

0 1( ) ( , )C R C I R=  

 which due to convexity of 1( , )C I R  is a convex function for each possible inventory level I. All 
other cost functions for periods t=1,…,T are not affected by the change of information at the 
beginning of the planning period.  

Under lost-sales conditions we can derive the following proposition regarding the optimal policy 
structure. 

Proposition 3:  If unsatisfied demand is lost in each period instead of being backordered, the 
structure of the optimal policy is still of the (R,SL,SK(p)) type. 

 

Proof:  

In the lost-sales case the state transformation is  It+1 = max{It+QL,t+QK,t-xt ; 0}  for t=1,2,…,T.   

Thus, cost function ( , )t L KH I Q Q R+ +  changes to  

{ }1
0

( , ) ( ) (max ;0 , ) ( )t L K L K t L KH I Q Q R L I Q Q C I Q Q x R f x dxβ
∞

++ + ≡ + + + ⋅ + + −∫  . 

It can easily be checked that convexity of 1( , )tC I R+  guarantees convexity of 

{ }1
0

(max ;0 , ) ( )t L KC I Q Q x R f x dx
∞

+ + + −∫ , so that also ( , )tH I R  is convex in I and R. Thus, the 

proof by induction given for Proposition 1 also holds in the lost-sales case. 

 

When we face an infinite number of periods (T →∞ ), the following proposition holds for the 
optimal policy 
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Proposition 4:  In the infinite horizon problem with discount factor β<1, a policy of the 
(R,SL,SK(p)) type with stationary parameter values is optimal.  

Proof:  

For the infinite horizon problem the functional equations of dynamic programming have to fulfil 

0

( , ) ( , , ) ( )C I R D I R p g p dp
∞

= ∫  and  

0, 0
0

( , , ) min ( ) ( , ) ( )
L K

L K L K L KR Q Q
D I R p cQ pQ L I Q Q C I Q Q x R f x dxβ

∞

≥ ≥ ≥

⎧ ⎫⎪ ⎪= + + + + + ⋅ + + −⎨ ⎬
⎪ ⎪⎩ ⎭

∫  

Due to the stationary environment and the infinite horizon the decision problem for ordering is 
the same in each period. 

Now, Theorem 8-14 of Heyman and Sobel (1984) can be used to prove that the above functional 
relationship is satisfied by  

1( , ) lim  ( , )
T

C I R C I R
→∞

=   and   1( , , ) lim  D ( , , )
T

D I R p I R p
→∞

=   where 1( , )C I R  and 1( , , )D I R p  are 

defined as in Section 2. In the very same way as it is done in Serel (2007) for the three-
parameter policy in case of spot market capacity uncertainty, it can be shown that the conditions 
a to d of Theorem 8-14 hold in our case because the single-period costs and optimal order levels 
are bounded. 

It follows that all convexity properties of the respective cost functions also hold in the infinite 
horizon case. The order-up-to levels SL,1 and SK,1(p) converge to the stationary ones SL and SK(p) 
and can be calculated using the stationary cost function ( , )H I R  and the optimality conditions 
from Section 2. The optimal capacity reservation level R is calculated from minimizing 

[ ]0 ( ) ( , )
I

C R E C I R= . 

The optimality of a stationary (R,SL,SK(p)) policy for a discounted cost criterion in the infinite 
horizon case does not necessarily mean that this property also holds for an average cost criterion. 
From a practical point of view, however, the (R,SL,SK(p)) policy can also be applied to minimize 
average period cost since discount factor β can be chosen arbitrarily close to 1. 
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4. Conclusions 

Although we can exploit the knowledge of the optimal policy structure for problem solving, the 
optimal parameters generally can only be calculated by elaborate numerical methods. This is 
also due to the fact a complete function SK(p), for any p> 0, has to be computed for the short-
term procurement level. Thus for practical applicability we have the two main options. We can 
provide a simple heuristic approximation for the policy parameters or consider a simpler policy 
structure where the optimal parameters can be derived analytically.  

The latter approach has been investigated in Inderfurth and Kelle (2008). There a simple base 
stock (R,S) policy is considered where both short-term, spot market based and long-term, 
capacity reservation based  purchasing decisions follow a single order-up-to level S which does 
not depend on the spot market price p. The option of developing tractable heuristics for 
calculating the parameters of the optimal (R,SL,SK(p)) policy type is a field for further research.  
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