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Abstract: Order picking is a warehouse function that deals with the 
retrieval of articles from their storage locations in order to satisfy certain 
customer demands. Combining several single customer orders into one 
(more substantial) picking order can increase the efficiency of warehouse 
operations. The Order Batching Problem considered in this paper deals 
with the question of how different customer orders should be grouped into 
picking orders, such that the total length of all tours through the 
warehouse is minimized, which are necessary to collect all requested 
articles. For the solution of this problem, the authors introduce a Grouping 
Genetic Algorithm. This genetic algorithm is combined with a local search 
procedure which results in a highly competitive hybrid algorithm. In a 
series of extensive numerical experiments, the algorithm is benchmarked 
against a genetic algorithm with a standard item-oriented encoding 
scheme. The results show that the new genetic algorithm based on the 
group-oriented encoding scheme is preferable for the Order Batching 
Problem, and that the algorithm provides high quality solutions in 
reasonable computing times.  
Keywords: Warehouse Management, Order Picking, Order Batching, 
Genetic Algorithms. 
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1 Introduction 

Planning and control of warehouse processes is of significant importance to the 
efficient management of supply chains, since underperformance results in an 
unsatisfactory customer service and/or high costs. Considering the different 
warehouse functions (receiving, storage, order picking and shipping), this paper will 
focus on order picking which makes up for the most cost intensive operations. 
Different studies estimate that between 50% and 65% of the total warehousing 
operating costs can be attributed to order picking (Drury, 1988; Frazelle, 2002). 

Order picking involves the retrieval of articles from their storage locations in order to 
satisfy a given demand specified by customer orders (Petersen and Schmenner, 
1999). It arises since incoming articles are received and stored in unit loads while 
customers usually order small volumes of different articles. In manual-order-picking 
systems where order pickers collect the requested articles while walking or riding 
through the warehouse, three planning problems can be identified on the operative 
level: (i) assignment of articles to storage locations in the warehouse (article location 
assignment), (ii) grouping of customer orders into picking orders (order batching) and 
(iii) the determination of routes for the order pickers (picker routing). 

This paper deals with order batching, which has a major effect on the efficiency of 
warehouse operations (de Koster et al., 1999a). Improved order batching reduces the 
total length of the picker tours significantly, which are necessary for picking all 
requested articles provided by a set of customer orders. This results in a reduction of 
the total picking time (time needed to collect the requested articles of all customer 
orders), which represents an increase in the efficiency of the picking operations 
(reduction of processing times and labor costs). 

Hsu et al. (2005) have introduced a genetic algorithm for the Order Batching 
Problem, using a standard, item-oriented encoding scheme for the representation of 
solutions. Falkenauer (1992), however, has pointed out that for certain kinds of 
problems – so-called grouping problems – a different type of encoding scheme (i.e. a 
group-oriented encoding scheme) might be more appropriate. The Order Batching 
Problem considered in this paper is of such a kind. Thus, we will develop a 
corresponding genetic algorithm here, which makes use of a group-oriented 
encoding scheme. The new genetic algorithm will be additionally enhanced by a local 
search procedure, resulting in a hybrid algorithm. By means of extensive numerical 
experiments we will demonstrate that the proposed group-oriented approach is in fact 
superior to the existing item-oriented approach. 

The paper is organized as follows: In Chapter 2, the Order Batching Problem will be 
described in detail and an overview on solution methods will be given. Chapter 3 
contains a description of the general principle of genetic algorithms and the two 
specifications for the Order Batching Problem: the benchmark algorithm of Hsu et al. 
(2005) and the newly developed group-oriented genetic algorithm. In Chapter 4 the 
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design of the numerical experiments will be outlined, before the numerical results will 
be shown in Chapter 5. A summary of the main findings and an outlook on further 
research opportunities will complete the paper. 

2 The Order Batching Problem 

2.1 Problem Description and Model Formulation 
 
On their tours through the warehouse, order pickers are guided by so-called pick 
lists. A pick list consists of a set of order lines, where each line denotes an article 
requested by a customer, the location of the article in the warehouse, and the 
respective quantity of the article to be picked. 

The articles of a pick list constitute a so-called picking order. With respect to the 
relationship between customer orders and picking orders three cases can be 
distinguished: (i) a customer order has to be split into several picking orders, since it 
contains too many articles, which cannot be picked on a single tour, (ii) a customer 
order is identical to a picking order, and (iii) a picking order consists of several 
customer orders. This paper deals with the third case, the grouping (batching) of 
customer orders into picking orders, which allows for a significant reduction of the 
total length of the picker tours that are necessary for picking all requested articles 
provided by a set of customer orders. Fig. 1 demonstrates exemplarily the obvious 
advantages of combining two customer orders into one picking order; the black 
rectangles symbolize the locations of articles to be picked and the black lines 
symbolize the tours that the order pickers are meant to take. Fig. 1a) and 1b) depict 
the picker routes if each customer orders is picked separately (pick-by-order). Fig. 
1c) presents the corresponding route if the two customer orders are joint in a single 
picking order (pick-by-batch). 

 
Fig. 1: Different picker tours resulting from pick-by-order and pick-by-batch 
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The batching of customer orders into picking orders can either be done as proximity 
batching or as time window batching. In proximity batching, customer orders are 
combined with respect to the locations of the articles in the warehouse; in time 
window batching this is done with respect to the (different) arrival times of the 
customer orders (Choe and Sharp, 1991). Time window batching can be further 
distinguished in variable time window batching (fixed number of customer orders in a 
time window of variable length) or fixed time window batching (variable number of 
customer orders in a time window of fixed length) (van Nieuwenhuyse and de Koster, 
2009). However, in the following, proximity batching is considered only, since we 
assume a situation in which all customer orders are available at the beginning of the 
planning period. 

Usually, the order lines on a pick list are already sorted in the sequence in which the 
articles are to be picked. This sequence determines the route that the order picker 
takes through the warehouse. According to these routes, each order picker starts at 
the depot, proceeds to the respective storage locations of the articles, and returns to 
the depot. Despite the fact that an optimal polynomial-time algorithm exists for the 
determination of optimal picker routes for some warehouse layouts (among which is 
the one depicted in Fig. 1; Ratliff and Rosenthal, 1983), in practice the routes are 
usually determined by means of so-called routing strategies, which can be interpreted 
as heuristic solution approaches. The advantage of such routing strategies is that 
they produce schemes that can be memorized fast and can be followed easily, 
whereas the routing schemes stemming from the optimal algorithm are not always 
straightforward and sometimes even confusing for the order pickers (de Koster et al., 
1999b). 

The prevalent working equipment for order pickers is a picking device, i.e. a cart or a 
roll pallet, which they take with them on their tours through the warehouse and on 
which the articles are placed when picked from their storage locations. If several 
customer orders are picked on one tour, a sort-while-pick strategy is usually applied. 
That means that the articles are already separated according to the respective 
customers, while the tour is being completed. Therefore, no additional sorting effort is 
necessary at the end of the tour. The avoidance of unnecessary sorting processes is 
also the reason why splitting of customer orders – case (i) described above – is 
usually not allowed. The number of customer orders that can be collected on a single 
tour is restricted by the capacity of the used picking device. 

Order picking is considered to be the most labor-cost intensive function in a 
warehouse, due to the large amount of time-consuming manual operations (Drury, 
1988). Therefore, the minimization of the picking times is of superior interest to a 
distribution company. In order to minimize the total picking time it is essential to 
indentify the different time components of the order picking process, which are the 
following: (i) setup times (ii) travel times, (iii) search times and (iv) times for taking the 
articles from their locations (Tompkins et al., 2003). From these four components, the 
travel time is the most important one, since it consumes the largest proportion of the 
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total picking time and offers a significant potential for improvement. All other 
components can be considered as being constant. It should be noted that – 
assuming a constant travel velocity of the order pickers – a minimization of the total 
picking time (i.e. the time required to complete all picking tours) is equivalent to a 
minimization of the total length of all order picker tours. Efficient order batching can 
significantly reduce the necessary total tour length, and by doing so can help to 
reduce the total picking time. 

Given a fixed assignment of articles to storage locations and a given routing strategy, 
the Order Batching Problem (OBP) can be defined in the following way: How can a 
set of customer orders be grouped (batched) into picking orders (batches) such that 
the capacity limitation of the picking device is not violated and the total length of all 
necessary picking tours is minimized. (Wäscher, 2004) 

Gademann and van de Velde (2005) introduced a straightforward 0-1 optimization 
model for the Order Batching Problem whose columns consist of all feasible batches. 
In order to present this model, we introduce the following notation: 

Index Sets: 
J set of customer orders, where J = {1,...,n}; 
I set of all feasible batches. 

Constants: 
aij binary entry; aij = 1, if order j (j  J) is included in batch i (i  I), or aij = 0 

otherwise; 
C capacity of the picking device; 
cj capacity utilization required by customer order j (j  J); 
di length of a picking tour in which all orders of batch i (i  I) are collected. 

Decision Variables: 
xi binary decision variable; xi = 1, if batch i (i  I) is chosen, or xi = 0, otherwise. 

Each element i  I satisfies the following condition:  
 j ij

j
c a C,

J∈
⋅ ≤∑        (1) 

i.e., a batch is feasible, if it contains a set of customer orders that does not violate the 
available capacity of the picking device. The optimization model can then be 
formulated as follows: 

i i
i

min d x
∈

⋅∑
I

       (2) 

subject to 

 ij i
i

a x =1, j ;
∈

⋅ ∀ ∈∑
I

J    (3) 

 ix {0,1}, i .∈ ∀ ∈I     (4) 
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The sets of constraints (3) and (4) ensure that a set of batches is chosen in such a 
way that each customer order is included in exactly one of these batches. 

The Order Batching Problem is known to be NP-hard (in the strong sense) if the 
number of customer orders per batch is larger than two (Gademann and van de 
Velde, 2005). Numerical experiments based on the above-given model formulation 
(Henn et al., 2010) revealed that only small instances can be solved to optimality if all 
columns (batches) are generated in advance. This can be explained by the fact that 
the number of possible batches and, consequently, the number of binary variables 
increases exponentially with the number of customer orders. 

The model introduced above is general in the sense that it is not restricted to a 
specific routing strategy. Several such routing strategies are described in the 
literature (cf. Roodbergen, 2001). The one to which we refer here, the S-Shape 
Heuristic (or traversal strategy), appears to be the most frequently used one. Routing 
schemes resulting from the application of the S-Shape Heuristic are depicted in Fig. 
1. The S-Shape Heuristic is characterized by the fact that each aisle that contains an 
article to be picked is traversed entirely, before the order picker moves on to the next 
aisle containing an article. In case that an odd number of aisles have to be visited, 
the last aisle containing an article to be picked must not be traversed entirely; instead 
the order picker will return directly to the depot after the last article has been picked. 

 
2.2 Review of Solution Approaches 
 
In the literature, only a few exact solution approaches have been proposed for the 
Order Batching Problem. These approaches include a branch-and-price algorithm 
with column generation (Gademann and van de Velde, 2005), and a mixed integer 
approach (Bozer and Kile, 2008). Both approaches share the same drawback of 
being limited to small problem sizes only, while problem instances of practical 
relevance need to be solved by means of heuristic methods. 

Heuristics approaches to the OBP can be differentiated into two main categories: 
constructive heuristics and metaheuristics. The constructive heuristics can be further 
distinguished in priority rule-based algorithms, seed algorithms and savings 
algorithms (Wäscher, 2004).  

In priority rule-based algorithms, customer orders are assigned to batches in the 
sequence of non-ascending priority values. The priority values can reflect any kind of 
ordering, e.g. one related to the size of the customer orders or one related to their 
arrival times. The latter corresponds to the First-Come-First-Served (FCFS)-rule, 
probably the best known representative of this sub-category. Other methods for the 
determination of priority rules include the space-filling curves by Gibson and Sharp 
(1992) and Pan and Liu (1995). The assignment of customer orders to batches can 
be done sequentially (Next-Fit-Rule) or simultaneously (First-Fit- and Best-Fit-Rule) 
(Wäscher, 2004): Using the Next-Fit-Rule, a customer order is assigned to a batch, if 
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there is sufficient capacity available in the batch. In case the capacity utilization of a 
customer order would violate the capacity of the picking device, the current batch will 
be closed and a new one will be opened for it. Using the First-Fit-Rule, all batches 
are numbered in the sequence according to which they have been opened and a 
customer order will be assigned to the batch with the smallest number, which 
provides enough capacity. When the Best-Fit-Rule is applied, a customer order will 
be assigned to the batch with the least remaining capacity which is still sufficient for 
the inclusion of the customer order. 

Seed algorithms for the OBP were first introduced by Elsayed (1981) and Elsayed 
and Stern (1983). In these algorithms the batches are generated sequentially. For 
each batch one customer order – the so-called “seed” – is chosen as an initial order 
in the batch. Afterwards, customer orders, which are “similar” to the seed, are added 
to the batch. In the literature a large variety of rules exist that describe how the initial 
customer order can be chosen and how the similarity of customer orders can be 
measured. An overview of various rules is given in de Koster et al. (1999a) and in Ho 
et al. (2008). 

Solution methods of the savings type are inspired by the Clarke-and-Wright 
Algorithms for the Vehicle Routing Problem (Clarke and Wright, 1964). In the basic 
version of this algorithm, C&W(i), a savings value savij = si + sj - sij, is determined for 
each feasible combination of customer orders i and j, where si and sj denote the 
lengths of the two tours on which the orders of customers i and j are collected 
separately, while sij denotes the tour length resulting from customer orders i and j 
being collected on a single tour. The different combinations (pairs) of customer 
orders are then sorted according to their savings values. Starting from the pair of 
customer orders possessing the highest savings value, three options are possible: 

a) If none of the two customer orders has been assigned yet, a new batch will be 
opened for them. 

b) If one of the customer orders has already been assigned to a batch and there is 
still enough capacity available in the batch, the second one is added to this batch. 
In case that the second order cannot be included in the batch due to a violation of 
the capacity constraint, the next pair of customer orders will be considered. 

c) If both customer orders have already been assigned to batches, the next pair of 
customer orders will be chosen from the list. 

An improved version of the algorithm, CW(ii), can be obtained if the savings are 
determined anew each time customer orders have been assigned to batches. For the 
computation of the new savings, customer orders included in one batch will be 
aggregated to one “large” customer order. In addition to these two savings algorithms 
presented here, several other variants are described in the literature, e.g. the EQUAL 
algorithm and the Small-and-Large algorithm (both introduced by Elsayed and Unal, 
1989). 
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In the past few years several metaheuristics have been applied to the OBP. 
Gademann and van de Velde (2005) describe an iterated descent approach that is 
included in their branch-and-price algorithm. Albareda-Sambola et al. (2009) have 
developed a Variable Neighborhood Search Approach and Henn et al. (2010) have 
proposed an Iterated Local Search Method and a metaheuristic based on Ant Colony 
Optimization. A variant of Tabu Search, the Attribute Based Hill Climber, is presented 
by Henn and Wäscher (2010). 

Only two papers have dealt with genetic algorithms so far. The approach of Tsai et al. 
(2008) describes a special case where the OBP and the routing problem are solved 
as an integrated problem. Due to this specific situation, their approach is not 
considered any further in this paper. The approach of Hsu et al. (2005) will be used 
as a benchmark method for our approach later. Section 3.2 provides a detailed 
description of their algorithm. 

A detailed overview over solution methods for the OBP, including a detailed 
description of constructive heuristics as well as metaheuristics, is given in Henn et al. 
(2011). 

3 Genetic Algorithms 

3.1 General Principle 
 
Genetic algorithms belong to the class of population-based metaheuristics. Their 
concept was first adapted to combinatorial optimization problems by Holland (1975). 
In a genetic algorithm, each individual represents a solution for the underlying 
optimization problem; a population consisting of several individuals represents a set 
of solutions. Over a certain number of iterations, called generations, different 
operations are applied to the individuals in analogy to the evolutionary processes in 
nature. By means of these operations new individuals are created that represent new 
solutions of the optimization problem. Over the course of several generations, fitter 
individuals (i.e. those individuals with a better solution quality) have a higher chance 
of survival than less fitter ones. 

Fig. 2 depicts the general structure of a genetic algorithm. The design of such an 
algorithm requires several structural decisions, namely concerning the representation 
of solutions, the initialization of a starting population, and the components of the 
evolutionary process. 
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Fig. 2: General structure of a genetic algorithm (in analogy to Weicker, 2007) 

At first, an appropriate representation of the solutions, the encoding scheme (or 
alphabet), has to be selected. The encoding scheme describes how the information 
of a solution to the optimization problem will be represented by an individual. This 
information is captured in a string of genes, called the chromosome. Each of these 
genes represents a parameter of the solution. The representation can either be a 
direct one, i.e. the solution of the underlying optimization problem can be immediately 
identified from the chromosome, or an indirect one. In the latter case an additional 
decoding procedure is necessary which transforms the chromosome (genotype) into 
a solution of the optimization problem (phenotype). 

During the initialization phase, a starting population (initial population) is determined. 
In order to obtain a good diversity of different solutions, the initial chromosomes are 
usually generated randomly. 

The components of the evolutionary process include the calculation of fitness values, 
the selection of parental chromosomes, the crossover and mutation operators, and 
the transition to the next generation. In order to assess the quality of the current 
chromosomes, fitness values have to be computed at first. These fitness values are 
typically related to the objective function values of the optimization problem and, 
therefore, provide the connection between the genetic algorithm and the optimization 
problem. Different operators – called crossovers – can be applied to the individuals in 
order to simulate the evolutionary processes in nature (e.g. the mating of individuals). 
For this purpose, two individuals, the parental chromosomes, have to be chosen from 
the population by means of a selection mechanism. A large variety of such selection 
mechanisms (e.g. roulette wheel selection) exists in the literature. The crossover 
operators (e.g. one-point crossover, two-point crossover, uniform crossover) will then 
be applied to the parental chromosomes. This can be done separately or in 
combination with other crossover operators. In addition to the crossover, a second 
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type of operator, the mutation, is performed in analogy to nature. This operator 
affects only single genes of a chromosome. Again, different mechanisms for mutation 
are described in the literature. After the mutation, the individuals are transferred to 
the next generation and the steps of the evolutionary process are repeated until a 
termination criterion (usually a certain number of generations) is reached. The best 
chromosome of the final population represents the solution of the genetic algorithm. 

In the remaining parts of this chapter, two genetic algorithms for the OBP will be 
presented. The main differences between these two genetic algorithms are related to 
the implemented encoding scheme. The first one (Section 3.2), is the algorithm of 
Hsu et al. (2005) – which serves as a representative of an item-oriented genetic 
algorithm (IGA) – while the second one (Section 3.3) is the newly developed group-
oriented genetic algorithm (GGA). 

 

3.2 An Item-oriented Genetic Algorithm for the OBP 
 
In the following, we describe the Genetic Algorithm of Hsu et al. (2005), which uses a 
standard item-oriented encoding scheme. 

The length of the chromosomes is identical to the number of customer orders and the 
values of the genes correspond to the batch, to which the customer orders are 
assigned. Fig. 3 demonstrates this encoding scheme exemplarily for a solution 
consisting of eight customer orders: 

 
Fig. 3: Representation of a solution based on an item-oriented encoding scheme 

In this example, the customer orders 3 and 4 are assigned to batch A, the customer 
orders 1, 5 and 6 are assigned to batch B, and so on. It is important to note that this 
encoding scheme might lead to infeasible solutions if too many customer orders are 
assigned to a single batch, resulting in a violation of the capacity constraint. 

For the initial population, only feasible chromosomes are generated randomly. The 
chromosomes for the crossover operator are then determined by means of a roulette 
wheel selection, where the probability of choosing a chromosome into the mating 
pool is proportional to its fitness value. The fitness of an individual is related to the 
objective function value of the underlying optimization problem. However, the 
objective function value of the OBP has to be minimized, whereas the fitness values 
in genetic algorithms typically are to be maximized. In order to represent this 
situation, the fitness value of an individual is computed as the absolute value of the 
difference between the objective function value of the respective individual and the 
objective function value of the worst individual in the entire population. According to 
the description above, a fitness value of zero is assigned to the worst individual, 
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resulting in a probability of zero for being chosen in the roulette wheel selection. In 
order to avoid this situation, a small epsilon value is added to each fitness value, 
which guarantees that each individual (even the worst one) can be chosen in the 
roulette wheel selection. With each spin of the roulette wheel one chromosome is 
chosen; the roulette wheel selection is repeated until the size of the mating pool 
equals the size of the population. 

For the crossover operator the chromosomes in the mating pool are considered 
pairwise and a two-point crossover is applied with a certain crossover probability. In 
detail, this means that for each pair of chromosomes two crossover points are 
randomly determined and the genes between these points are exchanged. An 
example with crossover points in front of positions 4 and 7 is depicted in Fig. 4. 

 

Fig. 4: Example of a two-point crossover 

It is important to note that applying a crossover operator as shown in the example 
above might lead to infeasible solutions, due to violations of the capacity constraint. 
Such situations are dealt with by applying a correction mechanism to the infeasible 
offsprings which moves the last customer order from an infeasible batch to another 
batch with sufficient capacity according to the Best-Fit-Rule. 

The mutation operator considered in this algorithm is of the SWAP type where the 
values of two genes are exchanged. This corresponds to an exchange of the batch 
assignment of two customer orders. A mutation for the genes three and six is shown 
in the following figure: 

 

Fig. 5: Example for a mutation 
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A mutation of a chromosome occurs with a certain mutation probability. Similar to the 
crossover operator, the mutation operator may lead to an infeasible solution. In order 
to avoid such infeasibilities, we only allow for mutations which guarantee the 
feasibility of the solutions. After the mutation operator has been executed, the full 
population is transferred into the next generation. The algorithm terminates after a 
predefined number of generations. 

 
3.3 A Group-oriented Genetic Algorithm for the OBP 
 
The concept of a Grouping Genetic Algorithm was first introduced by Falkenauer 
(1992). He pointed out that the application of standard item-oriented encoding 
schemes (e.g. integer encoding or random key-based encoding) to grouping 
problems will result in two main problems. One is the large proportion of redundancy 
in the population, due to the fact that different chromosomes encode exactly the 
same solution. The second problem concerns the context insensitivity of the 
crossover operators, i.e. important information from the chromosome gets lost or is 
transferred incorrectly. Both aspects will deteriorate the successful application of 
genetic algorithms to grouping problems. In order to overcome these drawbacks, 
Falkenauer suggested a group-oriented chromosomal representation of solutions that 
reflects the structure of grouping problems much better (Falkenauer, 1996). 

For the OBP, this translates into the fact that in a Grouping Genetic Algorithm the 
genes of the chromosome should represent batches instead of customer orders, as it 
is the case in the standard item-oriented encoding scheme. This implies that the 
chromosomes can be of variable length. A group-oriented encoding scheme for the 
OBP – as it is used in our algorithm – is depicted exemplarily for eight customer 
orders in Fig. 6. It shows that customer orders 3 and 7 are in one batch, customer 
orders 1 and 4 in another one, and so on.  

 
Fig. 6: Representation of a solution based on a group-oriented encoding scheme 

For the initial population, chromosomes are generated randomly. In our case, only 
chromosomes corresponding to feasible solutions have been generated, since 
application of a GGA that starts from a population with too many infeasible 
chromosomes will not result in high quality solutions. 

Apart from the encoding scheme, the crossover operator in the GGA is group-
oriented, too. For this reason the classic crossover operators have to be modified for 
being included in the GGA. Based on Falkenauer (1996), we suggest the following 
procedure: 
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1) Randomly select two parental chromosomes from the population! 
2) Randomly select a crossing section in each of the chromosomes (cf. Fig. 7a)! 
3) For each of the two chromosomes, insert the genes (batches) of the crossing 

section of one chromosome into the respective other one. The new genes 
(batches) will be inserted in front of the genes of the crossing section (cf. Fig. 7b)! 

4) Mark all customer orders of the “old” genes (batches) which now occur twice in 
the chromosome (cf. circles in Fig. 7b)! 

5) Delete all genes (batches) containing at least one of the marked customer orders; 
note the customer orders that have been deleted completely and are now missing 
(cf. Fig. 7c)! 

6) Reinsert missing customer orders into new batches according to the First-Fit-Rule 
(Fig. 7d)! 

 
Fig. 7: Crossover operator for grouping problems (in analogy to Falkenauer, 1995) 

The mutation operator included in the algorithm should be a group-oriented one as 
well. This is implemented by deleting existing genes (batches) from the chromosome 
and reinserting the affected customer orders in additional batches according to the 
Best-Fit-Rule. 

For the transition to the next generation (cf. Fig. 8) an elitist strategy is applied 
(Goldberg, 1989). That means that a set of the best individuals (indicated by TOP in 
Fig. 8) is copied directly into the next generation. This procedure guarantees that the 
objective function value will improve monotonically. The remaining chromosomes of 
the new generation are generated by means of the crossover procedure described 
above, where one parental chromosome is chosen from the TOP part and the other 
from the non-TOP part. 
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Fig. 8: Transition into the next generation (in analogy to Gonçalves, 2007) 

A mutation occurs to a chromosome with a certain probability. In the mutation 
operator two randomly chosen batches are deleted and the relevant customer orders, 
which have been included in the batches, are sorted according to their size in a non-
increasing way. Applying the Best-Fit Rule the customer orders are then assigned to 
new batches. Afterwards, the non-TOP part is checked for identical chromosomes 
and duplicates are deleted. The population is completed by allowing the migration of 
some new randomly generated individuals (indicated by MIG in Fig. 8) into the 
population. Migration has a similar effect as mutation; it avoids premature 
convergence and ensures the diversity of the population. 

After the algorithm has gone through all generations, it concludes with a local search 
procedure, which is applied to the individuals of the final population. It consists of two 
phases: a SWAP- and a SHIFT-phase. At first it is tried to improve the objective 
function value by interchanging one customer order from one batch with a customer 
order from another batch (SWAP). If no further improvement can be obtained it is 
tried to improve the objective function value by moving a customer order from one 
batch to another (SHIFT). The procedure terminates if no further improvements can 
be obtained by either SWAPs or SHIFTs. This local search procedure is identical to 
the one described in Henn et al. (2010). 

4 Design of the Experiments 

 
4.1 Warehouse Parameters 
 
The warehouse layout considered in the numerical experiments is a single-block 
warehouse with two cross aisles and a depot located in the lower left corner. This 
layout type is identical to the one shown in Fig. 1 and is frequently used in numerical 
experiments (e.g. Henn et al., 2010; Petersen and Aase, 2004; de Koster et al., 
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1999a; Petersen and Schmenner, 1999). The warehouse consists of ten vertically 
orientated picking aisles. Each picking aisle has a capacity of 90 locations (45 on 
each side of the aisle), resulting in a total capacity of 900 storage location. Each 
storage location has a length of one length unit (LU). The necessary movement from 
the first and the last storage location of a picking aisle into the cross aisle amounts to 
one LU and the center-to-center distance between two aisles amounts to five LU. The 
depot is located 1.5 LU away from the first storage locations of the leftmost aisle. 

In the warehouse, each article is located at one storage location only and the 
distribution of the articles within the warehouse follows a class-based storage 
assignment policy. For this purpose, the warehouse is grouped into three classes: 
Articles with the highest demand frequency (A) are located in the leftmost aisle, 
articles with a medium frequency (B) are located in the four subsequent aisles and 
articles with a low demand frequency (C) are located in the five rightmost aisles. 
Furthermore, it is assumed that 52% of the demand arises from articles in class A, 
36% from B-articles and the remaining 12% from C-articles. Similar demand 
frequencies can be observed in real-world warehouses and have been considered in 
different numerical studies (de Koster et al., 1999a; Henn et al., 2010). 
 
4.2 Problem Classes 
 
For the numerical experiments, the number of customer orders is varied in five steps 
from 20 to 60 customer orders, where each step has a size of ten customer orders. 
The number of articles in a customer order is modeled as a random number which is 
uniformly distributed in {5, 6, …, 25}. The capacity of the picking device is defined by 
the maximum number of articles which can be placed on it. The values considered 
here are 30, 45, 60, 75. The underlying routing problem is solved by means of the S-
Shape Heuristic. Table 1 summarizes the characteristics of the problem classes. 

characteristic specification 

total number of customer orders (n) 20, 30, 40, 50, 60 

capacity of the picking device (C) 
[no. of articles] 

30, 45, 60, 75 

routing strategy S-Shape 

Table 1: Characteristics of the problem classes 
Combination of the different specifications results in 20 problem classes. For each 
problem class, 40 instances have been generated. 
 
4.3 Benchmarks 
 
The performance of the GGA will be compared to the performance of the IGA (i.e. the 
algorithm of Hsu et al. (2005)) with respect to solution quality and computing time. 
Both algorithms are evaluated in comparison to the CW(ii) heuristic, which serves as 



                 Sören Koch · Gerhard Wäscher 15 
 

baseline for the solution quality. CW(ii) is chosen as baseline heuristic, since it has 
shown to provide good results in different warehouse settings (de Koster et al., 
1999a). In order to allow for a fair comparison, the IGA is extended by the same local 
search procedure as it has been introduced for the GGA. 
 
4.4 Algorithm Parameters 
 
As explained in the previous chapter, genetic algorithms can be differentiated 
according to the realization of some structural aspects of genetic algorithms (cf. 
Section 3.1). The distinguishing features are summarized in Table 2. 

feature IGA GGA 

encoding scheme real integers real integers 

orientation item-oriented group-oriented 

decoding direct representation indirect representation 

crossover two-point crossover two-point crossover 

mutation mutation migration and mutation 

Table 2: Features of the genetic algorithms 

Similar to other experiments (e.g. Gonçalves, 2007) the size of the population will be 
adjusted proportionally to the size of the problem classes. In our case the number of 
individuals in the population will be set to four times the number of customer orders. 
All other parameters of the algorithms have been fixed across all problem classes. 
The number of generations has been set to 80 for both algorithms. 

For the determination of the necessary parameter settings, a series of pre-tests has 
been carried out in order to determine a suitable combination of the parameters. For 
the IGA all combinations of the following parameters have been tested: 

• Crossover probability  {0.3, 0.4, 0.5}; 
• Mutation probability  {0.05, 0.1, 0.2}; 

With respect to the GGA the following combinations were considered: 
• TOP  {0.10, 0.20, 0.30}; 
• Mutation probability  {0.10, 0.20, 0.30}; 

The parameter configuration which provided the best objective function values is 
depicted in the following Table 3: 
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characteristic IGA GGA 

size of the population 4*number of customer orders 

number of generations 80 

crossover probability 0.50 -*) 

mutation probability 0.10 0.30 

size of the TOP-part - 0.10 

*) The crossover probability for a certain chromosome cannot be defined explicitly, as the 
parental chromosomes are chosen randomly. However, if a chromosome is chosen as one of 
the parental chromosomes the crossover probability accounts for one. 

Table 3: Algorithm parameters 
 
4.5 Implementation and Hardware 
 
The different algorithms have been implemented in C++ using the DEV Compiler 
Version 4.9.9.9.2. The numerical experiments have been carried out on a desktop PC 
with a 2.2 GHz Pentium processor and 2 GB RAM. 

5 Results of the Experiments 

5.1 Solution Quality 
 
The results of the numerical experiments are summarized in Table 4. In comparison 
to the total tour length resulting from the application of C&W(ii), the IGA reduced the 
total length of the picker tours by 3.15% on average. The improvements ranged from 
0.68% (no. of customer orders: n = 60; capacity of the picking device: C = 75) to 
5.76% (n = 20; C = 75). By application of the GGA an average improvement of 3.75 
% could be obtained. The improvements varied between 1.27% (n = 60; C = 75) and 
6.47% (n = 20; C = 75). The group-oriented approach outperformed the item-oriented 
approach not only with respect to the average improvement, but also resulted in a 
superior average objective function value for every single problem class. 

The superior results of the GGA can be explained by two aspects: On the one hand, 
in comparison to the IGA, the GGA generates solutions that incorporate – on average 
– a slightly smaller number of batches. A smaller number of batches tends to result in 
a smaller total tour length. On the other hand, the difference in the number of batches 
is not large enough to account completely for the differences in the solution quality. 
Therefore, it can be concluded that the main differences stem from the composition 
of the batches. The GGA is able to match customer orders better than the IGA does. 

The improvements obtained by application of the two genetic algorithms are larger for 
problem classes that are characterized by a small or medium-size number of 
customer orders, or by a small or medium-size capacity of the picking device. For 
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problem classes with a large number of customer orders and a large capacity of the 
picking device – e.g. problem class (n = 60; C = 60) or (n = 60; C = 75) – the 
improvements obtained from the two metaheuristics are small. This can be explained 
by the fact that the C&W(ii) heuristic performs best if a large number of customer 
orders is available that should be grouped into one batch. The good performance of 
C&W(ii) leaves little potential for improvements for the genetic algorithms. 

n C C&W(ii) IGA GGA 
 [no. 

art.] 
Ø TTL 
[LU] 

Ø no. 
bat. 

Ø TTL 
[LU] 

Ø impr. 
[%] 

Ø no. 
bat. 

Ø TTL 
[LU] 

Ø impr. 
[%] 

Ø no. 
bat. 

20 30 4360 11.3 4206 3.55 10.7 4197 3.77 10.7 
 45 2855 7.1 2745 3.74 6.9 2700 5.32 6.8 
 60 2283 5.3 2184 4.31 5.3 2167 5.02 5.3 
 75 1878 4.3 1769 5.76 4.2 1756 6.47 4.2 

30 30 6426 16.5 6225 3.09 15.8 6195 3.59 15.7 
 45 4333 10.7 4152 4.11 10.3 4119 4.86 10.3 
 60 3288 7.8 3149 4.17 7.7 3125 4.90 7.6 
 75 2715 6.3 2604 3.95 6.1 2582 4.77 6.1 

40 30 8219 21.2 7945 3.52 20.2 7926 3.60 20.2 
 45 5504 13.8 5308 3.69 13.3 5273 4.17 13.1 
 60 4282 10.4 4113 4.11 10.0 4088 4.44 9.9 
 75 3479 8.2 3377 3.00 8.1 3347 3.75 8.0 

50 30 10509 27.0 10186 3.24 25.9 10124 3.69 25.7 
 45 6760 16.9 6608 2.32 16.6 6580 2.65 16.6 
 60 5254 12.8 5154 1.92 12.7 5120 2.50 12.6 
 75 4325 10.3 4254 1.70 10.1 4219 2.43 10.1 

60 30 12145 31.6 11721 3.56 30.1 11674 3.82 30.0 
 45 7930 20.1 7803 1.58 19.8 7755 2.13 19.7 
 60 6147 15.1 6086 0.98 15.0 6036 1.75 14.8 
 75 5029 12.1 4997 0.68 12.0 4964 1.27 11.9 

Minimum  4.30  0.68 4.20  1.27 4.20 
Average  13.44  3.15 13.04  3.75 12.97 
Maximum  31.60  5.76 30.10  6.47 30.00 

“n”: number of customer orders; “C [no. art.]”: capacity of the picking device in number of 
articles; ”Ø TTL [LU]”: average total tour length of picking tours in length units; “Ø impr. [%]”: 
improvement obtained by the respective algorithm in comparison to the C&W(ii) solution in 
percent; “Ø no. bat.”: average number of batches. For each problem class the best obtained 
average total tour length is highlighted bold. 

Table 4: Solution quality 

The development of the solution quality of the two genetic algorithms as a function of 
the number of generations is given in Fig. 9. The evolution is shown exemplarily for 
the four problem classes (n = 20; C = 30), (n = 30; C = 60), (n = 50; C = 30), and (n = 



18 A Grouping Genetic Algorithm for the Order Batching Problem in Distribution Warehouses 
 

60; C = 75). The average deviation of the objective function value from the best 
objective function value obtained at the end of the local search phase is depicted on 
the y-axis. The number of generations (1-80) is presented on the x-axis; the last entry 
(i.e. 81) on the x-axis corresponds to the termination of the algorithm after the local 
search phase. The values in the graph represent the average deviation calculated 
across all 40 instances. Fig. 9 demonstrates two important differences between the 
two algorithms: The GGA needs fewer generations than the IGA in order to identify 
good solutions. Moreover the quality of the solutions resulting from the application of 
the “pure” genetic algorithm (i.e. before the local search is applied) is much better for 
the group-oriented approach than for the item-oriented approach. This is 
demonstrated by the different step-sizes after generation 80. Application of the local 
search phase to the final generation of the GGA resulted in an additional average 
improvement between 0.3 % (n = 20; C = 30) and 5 % (n = 60; C = 75) whereas the 
application of the local search phase in the IGA resulted in additional improvements 
between 1.1 % (n = 20; C = 30) and 9.8 % (n = 60; C =75). 

 

 

Fig. 9: Development of the solution quality over the generations for different problem 
classes 
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5.2 Computing Times 
 
The computing times for the two genetic algorithms are depicted in Table 5. Those 
for the C&W(ii) algorithm are not listed here, since they can be considered as 
negligible (<1 sec.). Table 5 demonstrates that the computing times are determined 
by two parameters, namely by the number of customer orders and by the size of the 
capacity of the picking device; an increase of each of the two parameters leads to an 
increase of the computing times of the algorithms. Comparison of the computing 
times of the two algorithms reveals that the item-oriented approach requires less 
computing time for small and medium-size problems of up to 40 customer orders. For 
a larger number of customer orders and for larger capacity of the picking device, in 
particular, the group-oriented approach consumes less time. 

n C IGA GGA 
 [no. art.] Ø time [sec.] Ø time [sec.] 

20 30 3.1 7.0  
 45 4.2 7.9  
 60 4.5 9.0  
 75 4.5 9.8  

30 30 9.1 17.3  
 45 15.0 20.8  
 60 17.2 24.5  
 75 16.5 27.1  

40 30 22.5 34.6  
 45 39.5 44.8  
 60 48.9 53.7  
 75 49.6 59.9  

50 30 46.7 60.5  
 45 87.4 86.2  
 60 117.2 109.4  
 75 109.2 116.5  

60 30 94.8 99.6  
 45 174.8 150.2  
 60 230.3 187.2  
 75 242.4 207.6  

“n”: number of customer orders; “C [no. art.]”: capacity of the picking device in number of 
articles; “Ø time [sec.]”: average computing time in seconds per instance. 

Table 5: Computing times 

In general the computing times of both algorithms are reasonable, with a maximum of 
four minutes for the IGA and three and a half minutes for the GGA, both for the most 
challenging problem class (n = 60; C = 75). 
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6 Summary and Outlook 

The paper has dealt with the Order Batching Problem, a problem arising in the 
context of order picking in distribution warehouses. Order batching is of pivotal 
importance for the efficient management of warehouse processes, since improved 
order batching can result in a significant reduction of the delivery lead times and in a 
reduction of the operating cost of a warehouse. In this paper two population-based 
metaheuristics, an item-oriented genetic algorithm and a group-oriented genetic 
algorithm have been presented for the solution of the Order Batching Problem. The 
application of both algorithms results in a significant reduction of the total tour length 
of the order pickers with reasonable computing times. However, the application of the 
group-oriented genetic algorithm resulted in improvements that are larger than those 
of the item-oriented one. These results demonstrate that it is very important to 
choose a genetic algorithm that is suitable for the problem in order to obtain the best 
results possible. For the Order Batching Problem considered in this paper, it could be 
shown that a group-oriented approach is the best possibility to represent the problem 
structure. 

Interesting aspects for further research could be the incorporation of due dates for 
customer orders or the extension of order batching to the wave picking concept. 
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